

Northwest and Alaska Fisheries Center

National Marine Fisheries Service

U.S. DEPARTMENT OF COMMERCE

NWAFC PROCESSED REPORT 88-09

Ichthyoplankton off Washington, Oregon, and Northern California, March-April 1984

June 1988

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

Ichthyoplankton off Washington, Oregon, and Northern California, March-April 1984

.

by

Jay B. Clark and David S. Savage

Resource Assessment and Conservation Engineering Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way NE, BIN C 15700, Building 4 Seattle, Washington 98115

June 1988

Ichthyoplankton off Washington, Oregon, and Northern California March-April, 1984 by J. B. Clark and D. S. Savage

INTRODUCTION

This is the eighth report of a series describing cooperative U.S.-U.S.S.R. ichthyoplankton surveys conducted off the U.S. west coast from 48°-40°N. The cruise described here took place aboard the Soviet research vessel POSEYDON, and is designated 1P084. Similar reports, based on cruises occurring since April-May 1980, have already been produced (Kendall and Clark 1982a, 1982b, Bates 1984, Clark 1984, 1986a, 1986b, and Clark and Kendall 1985). These surveys were designed to determine seasonal and spatial distribution of ichthyoplankton as background information for more detailed studies of early life history of fishes of the area. The initial plans were to conduct two such surveys each year, at different times of the year, so that after several years the complete annual cycle of fish egg and larval occurrence would be documented. These are the first large-scale ichthyoplankton surveys of the area to sample all seasons. Results from these surveys eventually will be compared to those of the CalCOFI program off California and Baja California to the south, and to several smaller-scale surveys conducted previously off Washington and Oregon. In the meantime, we plan to present a data report such as this for each cruise, as soon as feasible.

During this cruise, bongo tows to 200 m were taken at 112 of the usual 124 stations. At the remaining 12 stations, deep bongo tows to 400 m were made to collect sablefish eggs and larvae (Kendall and Matarese 1987). American samples were fixed in formalin at sea but sorted fish larvae were later transferred to 70 % ethanol for storage. This was done to inhibit bone deterioration.

METHODS AND MATERIALS

A grid of 124 stations laid out off the Washington, Oregon, and northern California coasts extended from 3 miles (5.6 km) to 200 miles (370 km) from shore (Figure 1). Stations were more closely spaced nearshore than offshore. The Soviet research vessel POSEYDON, with Dr. Y. Pashenko serving as chief scientist occupied these stations from north to south from 11 March to 4 April 1984. At each station hydrographic casts at standard depths (0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, and 600 m) were made as water depth permitted. Temperature, salinity, oxygen, phosphate, and silicate determinations were made aboard ship with these samples. Results of these measurements will be reported elsewhere. Paired neuston tows using 0.3 m high by 0.5 m wide Sameoto samplers (Sameoto and Jaroszynski 1969) with 0.505 mm mesh nets were made at 2.0 knots (1.03 m/sec) for 10 min at each station. A standard MARMAP bongo tow (Smith and Richardson 1977) with 60 cm diameter frames, and 0.505 mm mesh nets was made with a maximum of 300 m of wire out at 112 of the stations and with a maximum of 570 m of wire out at 12 stations near the edge of the continental shelf. Flowmeters in the mouths of the nets were used to determine the volume of water filtered by each net. The Soviets retained one of the paired neuston and bongo samples, while the Americans retained the other. The American samples were processed by the Polish Plankton Sorting Center in Szczecin, Poland, where displacement plankton volumes were determined (for bongo samples) and all fish eggs and larvae were removed. The fish eggs were later identified and counted by Ann C. Matarese at NWAFC and Deborah Blood. Identifications were made to the lowest taxonomic

level possible, and in some cases "types" of unidentified eggs or larvae were established in hopes that with further study their identity could be established. Beverly Vinter at NWAFC checked larval identifications for both the bongo and neuston samples. Counts of fish eggs and larvae in the samples were converted to numbers per 10 m² of surface area for the bongo samples and numbers per 1,000 m³ for the neuston samples. The logarithm of the number of eggs or larvae in the survey area is based on the Sette and Ahlstrom census as used by Richardson (1981).

RESULTS

The station pattern (Figure 1) was occupied as planned. Data associated with the 124 stations are listed in Tables 1A and 1B. A summary of the catches of fish eggs, larvae, and juveniles is presented in Tables 2, 3 and 4. Totals of 37 taxa of eggs and 48 taxa of larvae were found. Figures 2-7 illustrate the rank abundances of egg and larval catches in bongo and neuston tows for the cruise using several measures of abundance. Figures 8-32 show the geographic distribution, abundance at each station and length frequencies of larvae and eggs of the more abundant taxa. Results of recurrent group analysis of eggs and larvae from neither the neuston samples nor the bongo samples showed affinities between species at either the 0.400 or 0.300 affinity levels.

Relative Abundances

The rank order of abundance among the taxa depends on the measure of abundance examined. Four measures of abundance for each net were used: total numbers caught, percent occurrence, logarithm of number in survey area, and mean number per 1,000 m³ (for neuston) and mean number per 10 m² (for bongo). In the bongo net, egg catches were dominated by Myctophidae according to all

abundance criteria except for percent occurrence (Figure 5), in which Bathylagidae dominated. These results are similar to the May-June 1982 cruise (Clark 1986a). In the neuston net, two of the abundance criteria for eggs were dominated by <u>Microstomus pacificus</u>, another by Pleuronectidae, and another by Trachipterus altivelis.

Larval and juvenile catches in the bongo net were dominated by <u>Stenobrachius leucopsarus</u> in all abundance criteria. These results are similar to the May-June 1981 cruise (Clark 1984). A total of 2246 Stenobrachius leucopsarus larvae was caught in the bongo net.

In the neuston net, larval catches were dominated by <u>Hemilepidotus</u> <u>spinosus</u> using two of the abundance criteria, and by <u>Glyptocephalus</u> <u>zachirus</u> and <u>Cololabis</u> <u>saira</u> using two other measures. Juvenile catches in the neuston net were dominated by <u>Tarletonbeania</u> <u>crenularis</u> in all categories except one, which was dominated by <u>Scorpaenichthys</u> <u>marmoratus</u>.

Distributions

While this is not intended to be a definitive report on these data, certain outstanding features of distribution of eggs, larvae and juveniles of the more abundant taxa will be mentioned.

<u>Nansenia candida</u> (Figure 8) - Larvae of the bluethroat argentine were found in bongo catches predominantly in the central one-third of the survey area. Argentinid larvae ranged from 3.8-17.6 ($\overline{x} = 7.0$) mm SL with a percent occurrence of 26%.

Bathylagidae (Figure 9) - Blacksmelt eggs were found in bongo tows throughout the survey area. They occurred at 51% of the stations occupied.

<u>Bathylagus</u> spp. (Figure 10) - Blacksmelt eggs from bongo catches were found throughout the survey area with the highest concentrations occurring in the southern half of the area. They were found at 39% of the stations occupied.

<u>Bathylagus ochotensis</u> (Figure 11) - Larvae of the popeye blacksmelt in bongo samples were caught primarily in the southern half of the survey area and ranged in length from 3.8-23.0 ($\overline{x} = 7.6$) mm SL. Larvae occurred at 45% of the stations occupied.

Myctophidae (Figure 13) - Eggs of lanternfishes were found in bongo samples in the southern half of the survey area. Lanternfish eggs were found at 32% of the stations occupied.

<u>Stenobrachius leucopsarus</u> (Figures 14 and 15) - Larvae of the northern lanternfish in bongo catches were distributed throughout the survey area both in continental shelf waters and in offshore areas. The larvae ranged in length from 2.0-27.0 ($\overline{x} = 5.1$) mm SL and occurred at 79% of the stations occupied. A total of 33 juveniles, distributed evenly throughout the survey area, was also found in bongo samples.

<u>Tarletonbeania crenularis</u> (Figures 16 and 17) - Blue lanternfish larvae caught in bongo tows ranged from 2.0-16.0 ($\overline{x} = 5.4$) mm SL and had a percent occurrence of 41%. They were found primarily in the southern half of the survey area. Blue lanternfish juveniles, which were caught in the neuston net, were found in highest concentrations in the southern half of the survey area.

<u>Cololabis saira</u> (Figure 18) - Larvae of the Pacific saury were found in neuston samples in the southern half of the survey area. They ranged from 5.5-59.0 ($\overline{x} = 18.4$) mm SL and occurred at 40% of the stations occupied.

<u>Trachipterus altivelis</u> - King-of-the-salmon eggs were found in neuston catches throughout the survey area and were especially abundant in coastal waters from 42°-46°N. They were found at 48% of the stations occupied.

<u>Sebastes</u> species (Figures 19 and 20) - Rockfish larvae in the bongo net were distributed fairly evenly throughout the survey area. The bongo caught larvae ranged in length from 2.0-18.9 ($\overline{x} = 4.5$) mm SL and occurred at 66% of the stations occupied. Rockfish larvae caught in the neuston net ranged from 3.0-28.0 ($\overline{x} = 16.6$) mm SL and had a percent occurrence of only 15%. Neuston caught larvae were found throughout the survey area, but were seen at highest concentrations in the southern half of the area. Larvae caught in the neuston net were considerably larger on the average than those caught in the bongo, as was the case during the April-May 1980 cruise (Kendall and Clark 1982a).

<u>Anoplopoma fimbria</u> (Figures 21 and 22) - Sablefish or black cod larvae in neuston samples were found throughout the survey area and ranged from 7.1-28.5 (n = 270, \overline{x} = 11.2) mm SL with a percent occurrence of 30%. A total of 5 sablefish larvae was caught in standard 200 m bongo tows at stations 6, 25, 48, 57, and 58 and ranged from 6.7-8.3 (\overline{x} = 7.2) mm SL. A total of 9 sablefish larvae was caught in the special deep bongo tows to 400 m at stations 2, 12, and 19 in the northern third of the survey area and ranged from 6.0-7.0 (\overline{x} = 6.8) mm SL. The total of 5 sablefish eggs in the deep bongo tows near the edge of the continental shelf occurred at 4 of the 12 deep bongo stations occupied (stations 2, 19, 14 and 122). No sablefish eggs were found in the 200 m bongo tows.

<u>Hexagrammos</u> decagrammus (Figure 23) - Kelp greenling larvae were found in neuston catches in coastal waters throughout the survey area. They ranged from 8.0-40.0 ($\overline{x} = 19.0$) mm SL and occurred at 40% of the stations occupied.

<u>Hemilepidotus spinosus</u> (Figure 24) - Larvae of the brown Irish lord were caught in neuston samples throughout the survey area, but occurred at highest concentrations in shelf waters in the northern half of the area. Brown Irish lord larvae ranged from 4.6-22.5 ($\overline{x} = 9.3$) mm SL and occurred at 25% of the stations occupied.

<u>Icosteus aenigmaticus</u> (Figure 25) - Ragfish eggs in neuston tows were found predominantly in the southern half of the survey area in waters beyond the continental shelf. Ragfish eggs occurred at 31% of the stations occupied.

<u>Ammodytes hexapterus</u> (Figure 26) - Pacific sand lance larvae were found in neuston samples in coastal shelf waters in the northern one-third of the survey area. They were particularly abundant near Willapa Bay. The sand lance larvae ranged from 11.8-34.0 ($\overline{x} = 16.9$) mm SL and had a percent occurrence of 8%.

Pleuronectidae (Figures 27 and 28) - Righteye flounder eggs were found in coastal shelf waters throughout the survey area in both bongo and neuston samples. Pleuronectidae eggs in the bongo occurred at 16% of the stations occupied and those in the neuston occured at 11% of the stations occupied.

<u>Glyptocephalus</u> zachirus (Figure 29) - Rex sole eggs were found in neuston samples from coastal shelf waters in the northern half of the survey area. They had a percent occurrence of 19%.

Lyopsetta exilis (Figure 30) - Slender sole eggs from bongo catches were found at coastal shelf stations throughout the survey area, although there were fewer in the southern one-third of the grid. Slender sole eggs had a percent occurrence of 31%.

<u>Microstomus pacificus</u> (Figure 31) - Dover sole eggs were found in neuston samples from coastal waters throughout the survey area. They were especially abundant at stations 39 and 41 just north of Tillamook Bay. Dover sole eggs occurred at 29% of the stations occupied.

<u>Parophrys vetulus</u> (Figure 32) - English sole larvae were found in bongo samples collected primarily from coastal shelf waters in the northern half of the survey area. English sole larvae ranged from 2.6-17.8 ($\overline{x} = 7.6$) mm SL and were found at 17% of the stations occupied.

AKNOWLEDGEMENTS

We wish to thank Dr. Yuri Pashenko and the rest of the Soviet scientists, officers, and crew aboard the Soviet research vessel POSEYDON for their cooperative help at sea. Also, we wish to thank Coreene Stewart and Elliot Menoshe, who served as American scientists on the cruise (along with the senior author); Wendy Carlson and the staff in graphics; and Judy Baxter and her staff for word processing.

LITERATURE CITED

- Bates, R. D. 1984. Ichthyoplankton off Washington, Oregon, and Northern California October-November 1981. NWAFC Proc. Rep. 84-12, 41 p.
- Clark, J. B. 1984. Ichthyoplankton off Washington, Oregon, and Northern California May-June 1981. NWAFC Proc. Rep. 84-11, 46 p.
- Clark, J. B. 1986a. Ichthyoplankton off Washington, Oregon, and Northern California May-June 1982. NWAFC Proc. Rep. 86-01. 44 p.
- Clark, J. B. 1986b. Ichthyoplankton off Washington, Oregon and Northern California November-December 1983. NWAFC Proc. Rep. 86-14, 43 p.
- Clark, J. B., and A. W. Kendall, Jr. 1985. Ichthyoplankton off Washington, Oregon, and Northern California April-May 1983. NWAFC Proc. Rep. 85-10, 48 p.
- Kendall, A. W. Jr., and J. B. Clark. 1982a. Ichthyoplankton off Washington, Oregon, and Northern California April-May 1980. NWAFC Proc. Rep. 82-11, 44 p.
- Kendall, A. W. Jr., and J. B. Clark. 1982b. Ichthyoplankton off Washington, Oregon, and Northern California August 1980. NWAFC Proc. Rep. 82-12, 43 p.
- Kendall, A. W. Jr., and A. C. Matarese. 1987. Biology of eggs, larvae, and epipelagic juveniles of sablefish, <u>Anoplopoma fimbria</u>, in relation to their potential use in management. Marine Fish. Rev. 49:1-13.

- Richardson, S. L. 1981. Spawning biomass and early life of northern anchovy, <u>Engraulis mordax</u>, in the northern subpopulation off Oregon and Washington. Fish. Bull., U.S. 78:855-876.
- Sameoto, D. D., and L. O. Jaroszynski. 1969. Otter surface sampler: a new neuston net. J. Fish. Res. Board Canada. 25:2240-2244.
- Smith, P. E., and S. L. Richardson (editors). Standard techniques for pelagic fish egg and larvae surveys. FAO Fish. Tch. Pap. 175, 100 p.

•)

List of Tables

- Table 1a.--Data associated with neuston and bongo tows during cruise 1P084, March-April 1984. Bongo tows to 400 m were made at stations ending with "B". Bongo tows to 200 m were made at stations ending with "A".
- Table 1b.--Data associated with neuston and bongo tows during cruise 1P084, March-April 1984 continued.
- Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1P084, March-April 1984.
- Table 3a.--Fish larvae collected in bongo and neuston tows during cruise 1P084, March-April 1984.
- Table 3b.--Fish larvae collected in bongo and neuston tows during cruise 1P084, March-April 1984 continued.
- Table 4.--Juvenile fish collected in bongo and neuston tows during cruise 1P084, March-April 1984.

List of Figures

- Figure 1.--Bongo and neuston station locations and cruise track for cruise 1P084, March-April 1984.
- Figure 2.--Rank abundance of fish eggs caught in neuston tows during cruise 1P084, March-April 1984.
- Figure 3.--Rank abundance of fish larvae caught in neuston tows during cruise 1P084, March-April 1984.
- Figure 4.--Rank abundance of juvenile fish caught in neuston tows during cruise 1P084, March-April 1984.
- Figure 5.--Rank abundance of fish eggs caught in bongo tows during cruise 1P084, March-April 1984.
- Figure 6a.--Rank abundance of fish larvae caught in bongo tows during cruise 1P084, March-April 1984.
- Figure 6b.--Rank abundance of fish larvae caught in bongo tows during cruise 1P084, March-April 1984 continued.
- Figure 7.--Rank abundance of fish juveniles caught in bongo tows during cruise 1P084, March-April 1984.
- Figure 8.--Distribution and lengths of <u>Nansenia candida</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 9.--Distribution of Bathylagidae eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 10.--Distribution of <u>Bathylagus</u> spp. eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 11.--Distribution and lengths of <u>Bathylagus</u> <u>ochotensis</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 12.--Distribution of <u>Bathylagus ochotensis</u> juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 13.--Distribution of Myctophidae eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 14.--Distribution and lengths of <u>Stenobrachius leucopsarus</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

- Figure 15.--Distribution and lengths of <u>Stenobrachius leucopsarus</u> juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 16.--Distribution and lengths of <u>Tarletonbeania</u> crenularis larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 17.--Distribution and lengths of <u>Tarletonbeania</u> crenularis juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 18.--Distribution and lengths of <u>Cololabis</u> <u>saira</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 19.--Distribution and lengths of <u>Sebastes</u> spp. larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 20.--Distribution and lengths of <u>Sebastes</u> spp. larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 21.--Distribution and lengths of <u>Anoplopoma fimbria</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 22.--Distribution and lengths of <u>Anoplopoma fimbria</u> larvae from deep bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 23.--Distribution and lengths of <u>Hexagrammos decagrammus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 24.--Distribution and lengths of <u>Hemilepidotus spinosus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 25.--Distribution of Icosteus aenigmaticus eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 26.--Distribution and lengths of <u>Ammodytes hexapterus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 27.--Distribution of Pleuronectidae eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 28.--Distribution of Pleuronectidae eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

- Figure 29.--Distribution of <u>Glyptocephalus</u> zachirus eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 30.--Distribution of Lyopsetta exilis eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².
- Figure 31.--Distribution of <u>Microstomus pacificus</u> eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.
- Figure 32.--Distribution and lengths of <u>Parophrys</u> vetulus larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

G001A G002A G002B G003A	LA (N 47 48	т)	LC (V	ONG		AREA	TIME	STANDA	RD HAUL	TIME	STANDA	RD HAUL
G001A G002A G002B G003A	47 48) 	(1	JING								AD DO
G001A G002A G002B G003A	47 48			₹)	YYMMDD	KM2	GMT	A	B	GMT	FAC1 A	ORS* B
G001A G002A G002B G003A	47 48											
G002A G002B G003A	48	57.2	126	13.0	840311	1598	1836	0.020	13.497	2142	6.378	3.485
G002B	40	0.7	125	56.0	840311	1537	0224	0.020	13.364	01 22	7 065	1 011
GOODA	40	2.4	125	33.0	840312	1537	0530	0 022	14 781	0456	6 695	3 575
G004A	48	0.0	125	9.0	840312	1224	0829	0.021	14.159	0802	6.371	4.110
G005A	48	0.0	124	50.0	840312	1028	1115	0.020	13.081	1054	4.229	10.070
G006A	47	40.1	125	15.0	840312	1397	2105	0.021	13,980	2031	5,942	3.178
G007A	47	40.5	124	56.0	840313	926	0231	0.019	12.340	0202	5.480	3.971
G008A	47	39.2	124	35.0	840313	870	0500	0.019	12.897	0439	6.426	19.472
G009A	47	21.4	124	28.0	840313	881	0910	0.018	12.253	0843	3.848	17,489
G010A	47	20.9	124	49.0	840313	910	1301	0.019	12.378	1229	8.238	4.246
GOLLA	47	20.1	125	9.0	840313	1477	1619	0.027	17.738	1540	7.636	4.062
G012A	47	21.2	125	44.0	840313	3730	2015	0.020	13.592			
GO12B	47	21.5	125	43.0	840313	3738			10.100	1927	7.619	1.895
GOLJA	47	19.9	126	41.0	840314	5735	0234	0.020	13.130	0208	7.748	3.817
GOI 4A	47	19.5	127	37.0	840314	5211	1633	0.019	12.590	1546	7.329	3.646
COLON	40	10.2	120	43.0	940314	5/00	2135	0.020	12 706	2109	7 700	3.013
G017A	46	40.6	126	49.0	R40314	5367	0349	0.019	11 983	0320	6 549	3 27/
GOIBA	46	41.0	125	48.0	840315	5419	0959	0.018	11.792	0927	5.317	2.606
G019A	46	41.5	124	56.0	840315	1527	1611	0.020	13.086			
G019B	46	40.5	124	59.0	840315	1527				1513	5,861	1.507
G020A	47	0.0	125	0.0	840315	1675	2028	0.020	13.490	2008	6.113	4.075
G021A	46	59.9	124	37.0	840315	810	2212	0.020	13.152	2200	6.071	7.495
G022A	47	0.0	124	18.0	840316	775	0002	0.021	13.744	0017	6.695	26.779
G023A	46	40.6	124	15.0	840316	841	0344	0.020	13.119	0321	6.812	15.482
G024A	46	39.9	124	39.0	840316	1067	0633	0.019	12.768	0609	5.943	4.952
G025A	46	19.8	124	54.0	840316	1923	1002	0.019	12.497	0933	6.185	3.093
G026A	46	20.2	124	33.0	840316	980	1402	0.048	31.963	1333	6.226	5.146
G027A	46	20.5	124	12.0	840316	731	1628	0.022	14.974	1618	5.183	16.198
GO28A	40	1.6	124	6.0	840316	591	2030	0.020	13.577	2020	6.522	13.587
COZOR	40	0.3	124	20.0	040310	1075	2302	0.017	11.661	2232	2.108	3.930
COSOR	40	0.3	124	47.0	940317	1796	1014	0.020	13.362	1477	6 545	1 670
GONIA	46	0.5	125	38.0	840318	4693	0138	0 020	13 020	0109	6 513	3 200
G032A	46	0.1	126	36.0	840318	5698	1433	0.023	15.186	1409	6.231	3.100
G033A	46	0.0	127	33.0	840318	5676	2116	0.020	13,406	2050	6.759	3,313
G034A	45	59.9	128	31.0	840319	5511	0333	0.025	16.949	0306	6.276	3.107
G035A	45	21.0	128	33.0	840319	5427	1007	0.022	14.901	0909	5.975	3.017
G036A	45	20.3	127	37.0	840319	5751	1531	0.024	16.149	1505	6.199	3.069
G037A	45	20.1	126	40.0	840319	5560	2045	0.017	11.297	2020	6.249	3.093
G038A	45	20.3	125	44.0	840320	5289	0140	0.019	12.578	0114	6.361	3.165
G039A	45	39.6	124	44.0	840320	2465	0741	0.016	10.584	0714	6.631	3.283
G040A	45	40.5	124	16.0	840320	1036	1031	0.018	11.802	1013	5.991	4.609
GO41A	45	19.8	124	2.0	840320	448	1207	0.016	10.970	1155	6.590	13.450
GU42A	40	19.9	124	27.0	840320	569	1515	0.014	9.563	1450	6.316	7.177
C044A	45	19.0	124	46.0	840320	1702	2110	0.041	10 610	2045	5.237	2.555
G044B	45	19.0	124	46.0	840320	1792	0023	0.010	10.010	2347	6 895	1 711
G045A	45	0.0	124	48.0	840321	2040	0309	0,036	23,708	0243	6,179	3 175
G046A	45	0.0	124	26.0	840321	1014	0522	0.016	10.354	0455	6.390	3.195
G047A	45	0.0	124	5.0	840321	658	0702	0.017	11.299	0646	6.502	9,158
G048A	44	40.1	124	12.0	840321	765	1005	0.016	10.939	0955	5.761	11.522
G049A	44	40.0	124	31.0	840321	938	1253	0.017	11.291	1237	5.988	6.049
G050A	44	40.0	124	53.0	840321	1827	1655	0.016	10.882			
G050B	44	40.0	124	53.0	840321	1827				1608	7.245	1.784
G051A	44	40.3	125	47.0	840321	5284	2359	0.014	9.124	2334	5.592	2.796
G052A	44	40.1	126	44.0	840322	5564	0702	0.015	9.795	0650	6.585	3.228
G053A	44	40.0	127	40.0	840322	5573	1419	0.014	9.363	1351	5,618	2.79
G054A	44	40.1	128	35.0	840322	5302	2026	0.013	8.774	2002	6.123	3.046
G055A	44	0.1	128	34.0	840323	5520	0254	0.017	11.029	0230	6.793	3.346
G056A	44	0.1	127	39.0	840323	5360	0800	0.016	10.635	0732	6,558	3.346
GU5/A	43	59.4	126	42.0	840324	5413	0119	0.016	10.663	0048	6.604	3.285

Table 1a.--Data associated with neuston and bongo tows during cruise 1P084, March-April 1984. Bongo tows to 400 m were made at stations ending with "B". Bongo tows to 200 m were made at stations ending with "A".

24

1POB4 NEUSTON AND BONGO STATION SUMMARY

STATION	I	POSI	TION		DATE	POLYGONAL	N	EUSTON	TOW	BC	NGO T	W
						AREA	TIME	STAND	ARD HAUL	TIME	STANDA	RD HAUL
	LAT		LO	NG	VMANDD	VM2	Cher	FAC	TORS=	CHAT	FACT	ORS
	(N)		(W	,	IIMMDD	NM2	Gen			Gen		
G05BA	44 (0.0	125	49.0	840324	4884	1830	0.016	10.433	1803	7.015	3.473
G059A	44 19	9.7	124	54.0	840324	2115	2342	0.015	10.086	2313	7.137	3.448
GO60A	44 20	0.2	124	33.0	840324	1101	0125	0.015	10.092	0109	6.106	7.539
GO62A	44 20	D.U	124	12.0	840324	592	0554	0.029	19.162	0546	6.320	12.640
G063A	44 (0.0	124	33.0	840324	936	0810	0.017	11.321	0752	6.080	4.641
G064A	43 59	9.9	124	54.0	840324	1804	1034	0.034	22.464	1024	5.883	9.805
G065A	43 40	0.0	124	57.0	840324	1649	1329	0.016	10.707	1303	6.055	3.027
G066A	43 39	9.9	124	37.0	840324	951	1540	0.016	10.371	1515	6.164	3.082
GO67A	43 39	9.9	124	17.1	840324	549	2035	0.016	10.806	2020	6 320	7 707
C0693	43 20	0.0	124	51.0	840325	1005	01 30	0.024	16.194	0106	6.498	3.233
G070A	43 20	0.1	125	12.0	840325	2023	0455	0.025	16.505			
G070B	43 20	0.0	125	12.0	840325	2023				0411	7.022	1.738
G071A	43 20	0.5	126	5.0	840325	5057	1050	0.025	16.538	1025	6.573	3.222
G072A	43 20	0.0	127	1.0	840325	5209	1633	0.016	10.507	1608	6.557	3.246
G073A	43 19	9.7	127	57.0	840325	5120	2336	0.015	10.315	2311	6.302	3.104
G074A	43 19	9.9	128	52.0	840326	5258	0646	0.018	12.220	0622	6.131	3.050
G075A	42 40	9.9	120	57.0	840326	5870	1907	0.010	11,203	1840	6.530	3.249
G077A	42 40	0.0	127	3.0	840327	5616	0103	0.016	10.561	0038	6.814	3.373
GO78A	42 40	0.0	126	9.0	840327	5611	0642	0.017	11.457	0618	7.048	3.472
G079A	42 59	9.8	125	15.0	840327	1940	1213	0.018	11.857	1148	7.021	3.476
G080A	43 (0.0	124	55.0	840327	969	1431	0.017	11.214	1404	6.609	3.272
G081A	43 (0.0	124	34.0	840327	689	1628	0.016	10.657	1620	6.388	8.997
G082A	42 40	0.0	124	35.0	840327	777	2120	0.017	11.465	2108	5.114	5.878
G083A	42 38	8.9	124	54.0	840328	1020	0011	0.016	10.947	2337	6.351	3.160
G084A	42 40	0.0	125	14.0	840328	1754	0339	0.016	10.507			
G084B	42 40	0.0	125	14.0	840328	1754		0.010	10 505	0245	7.012	1.723
COREA	42 20	0.0	120	53.0	840328	1069	0746	0.016	10.525	0720	6.050	3.305
COR7A	42 20	0.0	124	33.0	840328	789	0955	0.017	11.794	0939	6.294	6.358
GOBBA	42 (0.0	124	22.0	840328	763	1259	0.017	11.008	1240	6.946	13.892
G089A	42 (0.0	124	43.0	840328	1091	1550	0.017	11.337	1523	6.319	3.175
G090A	42 (0.1	125	3.0	840328	2047	1848	0.020	13.383			
G090B	42 (0.0	125	3.0	840328	2047				1813	6.355	1.577
G091A	42 (0.5	125	57.0	840329	5258	0132	0.017	11.448	0102	6.042	3.006
G092A	42 (0.0	126	50.0	840329	5435	0737	0.016	10.363	0708	6.378	3.142
GU93A	42 (0.3	127	43.0	840329	5332	1346	0.017	11.547	1322	6.797	3.348
G094A	42 (0.1	128	30.0	840329	5293	1910	0.017	10 122	1849	6.594	3.232
C096A	41 20	0.0	127	36.0	840330	5640	0201	0.015	10.132	0706	6 947	3 390
G097A	41 19	9.8	126	43.0	840330	5410	1301	0.023	15,453	1234	6.845	3.372
G098A	41 19	9.9	125	49.0	840330	5400	1826	0.030	20.290	1800	6.680	3.291
G099A	41 39	9.7	124	55.0	840330	1904	2334	0.017	11.525	2305	6.475	3.190
G100A	41 39	9.9	124	35.0	840331	1014	0137	0.016	10.466	0113	6.425	3.181
G101A	41 40	0.0	124	14.0	840331	650	0533	0.017	11.504	0525	7.358	22.995
G102A	41 20	0.0	124	15.0	840331	983	0820	0.017	11.246	0808	6.417	9.038
GLUJA	41 19	9.0	124	36.0	840331	881	1151	0.016	10.768	1125	5.892	2.932
G104B	41 19	9.9	124	55.0	840401	3711	0131	0.010	10.003	0105	6.820	1.690
G105A	41 0	0.1	124	54.0	840401	1709	0417	0.015	10.19A	0352	6.105	3,022
G106A	41 0	0.1	124	35.0	840401	1023	0615	0.014	9.602	0542	5.580	2.794
G107A	40 59	9.6	124	16.0	840401	738	0825	0.017	11.479	0812	5.579	13.283
G10BA	40 39	9.7	124	23.0	840401	697	1107	0.018	11.859	1100	6.813	27.251
G109A	40 40	0.0	124	43.0	840401	1019	1439	0.019	12.612	1414	5.503	2.765
G110A	40 39	9.0	125	3.0	840401	1730	1807	0.015	10.006			
GIIOB	40 40	0.0	125	3.0	840401	1730				1720	6.573	1.627
GIIIA	40 40	0.3	125	55.0	840402	5102	0026	0.017	11.085	0000	6.153	3.092
GII3A	40 30	9.7	120	38.0	840402	5239	1207	0.016	10.794	1143	6.062	3.283
G114A	40 39	9.9	128	31.0	840402	5381	1749	0.015	10.147	1723	6.462	3.215
G115A	40 1	1.0	128	19.0	840402	4935	2304	0.018	12.088	2238	6.604	3.221
G116A	40 0	0.2	127	27.0	840403	5033	0400	0.016	10.644	0335	6.539	3.253
G117A	40 (0.0	126	35.0	840403	5332	0935	0.015	10.231	0911	6.486	3.227
G118A	40 (0.0	125	43.0	840403	4869	1446	0.015	10.291	1422	6.668	3.317
G119A	40 20	0.0	125	7.0	840403	2322	1819	0.017	11.201	1842	6.806	3.353
G120A	40 20	0.1	124	44.4	840403	1089	2127	0.016	10.857	2058	7.000	3.466
GIZIA	40 20	1.2	124	27.0	840404	639	0219	0.015	10.232	0200	5.971	4.265
G122A	40 0	1.0	124	51.0	840404	1671	0645	0.016	10,353	OAFE	6	1 640
G123A	40 (0.2	124	31.0	840404	1033	0929	0.015	10.207	0435	6 211	3 075
G124A	39 59	9.5	124	11.0	840404	829	1222	0.016	10.410	1204	5.628	4.329
						· · · · · · · · · · · · · · · · · · ·						

1P084 NEUSTON AND BONGO STATION SUMMARY

* "A" CONVERTS CATCH TO CATCH PER 10M2, "B" CONVERTS CATCH TO CATCH PER 1000M3 (SEE SMITH AND RICHARDSON 1977)

Table 1b.--Data associated with neuston and bongo tows during cruise 1P084, March-April 1984 continued.

STAGE: EGG

	NEU	STON	BON	1GO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	*	IN AREA	8	IN AREA
SPECIES				
UNIDENTIFIED	4.03	7.4735	21.77	11.0910
TELEOST TYPE A	1.61	6.7196		
TELEOST TYPE E			0.81	9.0524
TELEOST TYPE H	2.42	7.4341	0.81	8.5558
TELEOST TYPE P	0.81	6.2744	3.23	10.1530
DISINTEGRATED	1.61	6.9938	4.84	10.3295
ARGENTINIDAE	0.81	6.8592	1.61	9.8249
NANSENIA CANDIDA	0.81	6.9125	9.68	10.7306
NANSENIA CRASSA	2.42	7.4244	1.61	10.0377
MICROSTOMA MICROSTOMA			0.81	9.0461
BATHYLAGIDAE	2.42	7.6108	50.81	12.1951
BATHYLAGUS SPP.	4.84	7.8776	38.71	11.8073
BATHYLAGUS OCHOTENSIS			22.58	11.1522
GONOSTOMATIDAE			0.81	9.4033
CHAULIODUS MACOUNI	12.10	8.2388	18.55	11.1459
MYCTOPHIDAE			32.26	12.8871
THERAGRA CHALCOGRAMMA			3.23	9.7141
MERLUCCIUS PRODUCTUS	0.81	6.8760	14.52	11.0842
COLOLABIS SAIRA			2.42	9.9762
TRACHIPTERIDAE	0.81	6.8760		
TRACHIPTERUS ALTIVELIS	48.39	9.2633	37.10	11.2393
SEBASTOLOBUS SPP.	4.03	7.5480	4.84	10.9539
ANOPLOPOMA FIMBRIA			3.23	9.7335
ICOSTEUS AENIGMATICUS	30.65	9.0885	33.06	11.4967
ICICHTHYS LOCKINGTONI	25.00	8.9866	16.13	11.0083
BOTHIDAE	8.87	8.1157	7.26	10.2160
CITHARICHTHYS SPP.	5.65	7.5911	5.65	10.1347
PLEURONECTIDAE	11.29	8.7618	16.13	11.2625
GLYPTOCEPHALUS ZACHIRUS	18.55	8.8685	18.55	11.0926
HIPPOGLOSSUS STENOLEPIS			4.84	10.2852
ISOPSETTA ISOLEPIS	4.03	7.1417	6.45	9.8842
LYOPSETTA EXILIS	10.48	8.2739	30.65	11.3814
MICROSTOMUS PACIFICUS	28.23	9.3751	19.35	10.9577
PAROPHRYS VETULUS	6.45	7.5463	8.06	10.1352
PLATICHTHYS STELLATUS	0.81	6.3046	3.23	9.4876
PLEURONICHTHYS COENOSUS	0.81	5.8679		
PLEURONICHTHYS DECURRENS	4.84	7.6925	2.42	9.0347
PSETTICHTHYS MELANOSTICTUS	7.26	7.6204	11.29	10.1634

CRUISE:	1P084
STAGE:	LARVAE

SINGE. LANVAL	NEU	STON	во	NGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	8	IN AREA	8	IN AREA
SPECIES				
UNIDENTIFIED	0.81	6.0417	10.48	11.0475
DISINTEGRATED	7.26	8.3282	10.48	11.0278
OSMERIDAE	0.81	7.6931	6.45	10.3503
NANSENIA CANDIDA			25.81	11.4574
BATHYLAGIDAE			9.68	11.0460
BATHYLAGUS MILLERI			1.61	9.7049
BATHYLAGUS OCHOTENSIS	1.61	7.5644	45.16	12.3160
BATHYLAGUS PACIFICUS			34.68	11.1985
LEUROGLOSSUS STILBIUS			0.81	9.8513
MACROPINNA MICROSTOMA			1.61	9.0892
CYCLOTHONE SPP.			3.23	9.9458
ARGYROPELECUS LYCHNUS			1.61	9.6535
DANAPHOS OCULATUS			1.61	9.3025
CHAULIODUS MACOUNI			12.10	10.6739
EURYPHARYNX SPP.			0.81	9.5173
MYCTOPHIDAE			0.81	9.5217
DIAPHUS THETA	0.81	6.0987	8.06	11.0453
LAMPANYCTUS SPP.			1.61	9.8436
LAMPANYCTUS RITTERI			14.52	11.1669
STENOBRACHIUS LEUCOPSARUS			79.03	12.7519
SYMBOLOPHORUS CALIFORNIENSE			1.61	9.7998
TARLETONBEANIA CRENULARIS	0.81	6.9538	41.13	11.9007
PROTOMYCTOPHUM CROCKERI			33.87	11.3437
PROTOMYCTOPHUM THOMPSONI	0.81	6.9517	12.90	10.7878
LESTIDIOPS RINGENS			14.52	10.9065
MICROGADUS PROXIMUS			4.03	10.1434
MERLUCCIUS PRODUCTUS			2.42	11.0455
MACROURIDAE			0.81	9.5114
OPHIDIIDAE			0.81	9.1341
COLOLABIS SAIRA	40.32	9.2206		
TRACHIPTERUS ALTIVELIS			4.84	10.2696
MELAMPHAEIDAE			14.52	11.0133
MELAMPHAES SPP.			0.81	9.4534
SEBASTES SPP.	15.32	8.5353	66.13	12.0341
SEBASTES PAUCISPINUS			0.81	9.1523
SEBASTOLOBUS SPP.			13.71	11.0721
ANOPLOPOMA FIMBRIA	29.84	9.3303	6.45	10.3060
HEXAGRAMMOS DECAGRAMMUS	35.48	8.8672		
HEXAGRAMMOS LAGOCEPHALUS	4.03	7.8125		
OPHIODON ELONGATUS	8.87	7.7098	0.81	8.8921
COTTIDAE	0.81	6.2190	0.81	8.5857
ARTEDIUS HARRINGTONI			2.42	9.1359
ARTEDIUS MEANYI			0.81	9.4589
COTTUS ASPER			0.81	8.6718
HEMILEPIDOTUS HEMILEPIDOTUS	4.03	7,9496	2	
HEMILEPIDOTUS SPINOSUS	25.00	9.3592	4.84	9,7743
LEPTOCOTTUS ARMATUS	0.81	6.2190	1.61	9.0531
RADULINUS ASPRELLUS			2.42	9.1630

Table 3a.--Fish larvae collected in bongo and neuston tows during cruise 1PO84, March-April 1984.

CRUISE: 1PO84 STAGE: LARVAE

DIAGD. HARVAL				
	NEU	STON	BO	NGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	8	IN AREA	8	IN AREA
SPECIES				
SCORPAENICHTHYS MARMORATUS	13.71	8.2110		
AGONIDAE			1.61	9.1725
CYCLOPTERIDAE	2.42	6.8475	9.68	10.0510
RONQUILUS JORDANI			2.42	9.2789
PLECTOBRANCHUS EVIDES			0.81	8.6089
STICHAEIDAE	0.81	7.3100	0.81	8.5558
DELOLEPIS GIGANTEA	0.81	6.2340		
LYCONECTES ALEUTENSIS	6.45	7.7627		
PHOLIS SPP.	0.81	6.5271		
ICOSTEUS AENIGMATICUS			2.42	10.0094
AMMODYTES HEXAPTERUS	8.06	8.8192	9.68	10.1776
ICICHTHYS LOCKINGTONI			3.23	10.3941
CITHARICHTHYS SORDIDUS			0.81	9.5640
CITHARICHTHYS STIGMAEUS	2.42	7.3328	2.42	9.6840
ATHERESTHES STOMIAS			1.61	9.2968
GLYPTOCEPHALUS ZACHIRUS	0.81	7.8750	7.26	9.7868
ISOPSETTA ISOLEPIS			4.84	9.5976
LYOPSETTA EXILIS			5.65	9.8703
PAROPHRYS VETULUS	4.03	7.3024	17.74	10.9736
PLATICHTHYS STELLATUS			3.23	9.5648
PSETTICHTHYS 2	0.81	6.2260		
PSETTICHTHYS MELANOSTICTUS			5.65	9.8164

CRUISE:	1P084
STAGE:	JUVENILE

	NEU	STON	BO	NGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	8	IN AREA	*	IN AREA
SPECIES				
ALLOSMERUS ELONGATUS			0.81	8.6148
NANSENIA CANDIDA			0.81	9.5532
BATHYLAGUS OCHOTENSIS			3.23	10.1628
TACTOSTOMA MACROPUS			2.42	9.7708
DIAPHUS THETA			0.81	9.0461
STENOBRACHIUS LEUCOPSARUS			20.16	10.8316
SYMBOLOPHORUS CALIFORNIENSE	2.42	7.8637		
TARLETONBEANIA CRENULARIS	21.77	9.3429	2.42	9.7885
PROTOMYCTOPHUM CROCKERI			3.23	9.9461
COLOLABIS SAIRA	5.65	7.4818		
GASTEROSTEUS ACULEATUS	0.81	6.1005		
SEBASTES SPP.	0.81	6.0932		
HEXAGRAMMOS DECAGRAMMUS	4.03	7.2456		
HEXAGRAMMOS LAGOCEPHALUS	1.61	7.1185		
OPHIODON ELONGATUS	0.81	6.5205		
HEMILEPIDOTUS SPINOSUS	1.61	6.4494		
SCORPAENICHTHYS MARMORATUS	0.81	7.0463		
CITHARICHTHYS STIGMAEUS	0.81	6.4133		
LYOPSETTA EXILIS			0.81	8.8921

25 + Neuston and 200 m bongo ⊕ Neuston and 400 m bongo

Figure 2.--Rank abundance of fish eggs caught in neuston tows during cruise 1PO84, March-April 1984.

CRUISE: IPO84 GEAR: NEUSTON STAGE: LARVAE

Figure 3.--Rank abundance of fish larvae caught in neuston tows during cruise 1PO84, March-April 1984.

		CRUISE IF	084	GEARIN	EUSTON STAGE: JUVENILE	1	
SPECIES	NUMBER CAUGH	T •10' 20.00 30.00	40.00	50.00	SPECIES	PERCENT DCCURRENCE	100.00
TARLETONBEANIA CRENULARIS SYMBOLOPHORUS CALIFORNIENSE HEXAGRAMMOS DECAGRAMMUS COLOLABIS SAIRA SCORPAENICHTMYS MARMORATUS CITHARICHTMYS STIGMAEUS HEMILEFIDOTUS SPINOSUS OPHIDOON ELONGATUS HEXAGRAMMOS LAGOCEPHALUS SEBASTES SPP. GASTEROSTEUS ACULEATUS					TARLETONBEANIA CRENULARIS COLOLABIS SAIRA HEXAORAHHOS DECAGRAHHUS SYHBOLOPHORUS CALIFORNIENSE HEXAORAHHOS LAGOCEPHALUS HEMILEPIDOTUS SPINOSUS SCORPAENICHTHYS MARHORATUS CITHARICHTHYS STIGMAEUS OPHIODON ELONGATUS SEBASTES SPP. GASTEROSTEUS AGULEATUS		
SPECIES	MEAN NUMBER	PER 1000M3	\$0.00	75.00	SPECIES	LOG OF NUMBER IN SURVEY AREA	10.00
SCORPAENICHTHTS MARMORATUS TARLETONBEANIA CREMULARIS STHBOLOPHORUS CALIFORNIENSE OPHIODON ELONGATUS CITMARICHTHTS STIGHAEUS MEXAGRAHMOS DECAGRAMHUS COUDLABIS SAIRA SEBASTES SPP. MEMILEPIDOTUS SPINOSUS GASTEROSTEUS ACULEATUS HEXAGRAHMOS LAGOGEPHALUS					TARLETONBEANIA CRENULARIS SYNBOLOPHORUS CALIFORNIENSE COLOLABIS SAIRA HEXAGRAHMOS DECAGRAHHUS HEXAGRAHMOS LAGOCEPHALUS SCORPACHICHITYS MARHORIUS OPHIDDON ELONGATUS HEMILEPIDOTUS SYNOSUS CITHARICHTHYS STIOMAEUS GASTEROSTEUS ACULEATUS SEBASTES SPP.		

Figure 4.--Rank abundance of juvenile fish caught in neuston tows during cruise 1PO84, March-April 1984.

Figure 5.--Rank abundance of fish eggs caught in bongo tows during cruise 1PO84, March-April 1984.

	CRUI	SE: 19084	GEAR: 80	INGO STAGE LARVAE			
	NUMBER CAUGHT	=10'	250.00		PERCENT OCCURRENCE	AD 00 100 00	
SPECIES	0.00 50.00 100.00	150.00 200.00	250.00	SPECIES	0.00 20.00 40.00 80.00	80.00 100.00	
STENOBRACHIUS LEUCOPSARUS				STENOBRACHIUS LEUCOPSARUS			
SEBASTES SPP.				SEBASTES SPP.			
BATHYLAGUS OCHOTENSIS				BATHYLAGUS OCHOTENSIS			
TARLETONBEANIA CRENULARIS	ليبسط			TARLETONBEANIA CRENULARIS			
PAROPHRYS VETULUS	http://			BATHYLAGUS PACIFICUS	1		
NANSENIA CANDIDA	H			PROTOMYCTOPHUM CROCKERI			
BATHYLAGUS PACIFICUS	Н			NANSENIA CANDIDA			
PROTONYCTOPHUM CROCKERT	H			PAROPHRYS VETULUS			
SEGASIOLOBUS SFF.	Н			MELINPHAEIDAE			
OSMERIDAE	П			LESTIDIOPS RINGENS			
LAMPANYCIUS RITTERI	0			SEBASTOLOBUS SPP.			
BATHYLAGIDAE	0			PROTOMYCTOPHUM THOMPSONI			
DISINTEGRATED				CHAULIODUS MACOUNI			
DIAPHUS THETA	-			DISINTEGRATED			
MERLUCCIUS PRODUCTUS	1			UNIDENTIFIED			
MELAMPHAEIDAE	-			BATHYLAGIDAE			
AMMODITES HEXAPTERUS	1			AMMOUTTES HEXAPTENUS			
LESTIDIORS PROXIMUS	1			DIADWIG THETA			
PROTOMYCTOPHUM THOMPSONT	1			GI YPTOCEPHALUS ZACHIRUS			
CHAUL LOOUS MACOUN1	1			ANOPLOPOMA FIMBRIA			
PSETTICHTHYS MELANOSTICTUS				OSMERIDAE			
GLYPTOCEPHALUS ZACHIRUS				LYOPSETTA EXILIS			
CYCLOPTERIDAE	1			PSETTICHTHYS MELANOSTICTUS	H		
ANOPLOPOMA FIMBRIA	1			HEMILEPIDOTUS SPINDSUS	Н		
PLATICHINYS STELLATUS	1			INACHIPTERUS ALTIVELIS	Н		
ADTENING MEANYS	1			SUPSEITA ISULERIS	Н		
LYNPSETTA FXILIS	1			PLATICHTHYS STELLATUS	П		
ICICHINYS LOCKINGTONI	1			ICICHTHYS LOCKINGTONI			
HEMILEPIDOTUS SPINOSUS	1			CYCLOTHONE SPP.			
TRACHIPTERUS ALTIVELIS				MERLUCCIUS PRODUCTUS	Н		
CYCLOTHONE SPP.				ICOSTEUS AENIGMATICUS	H		
LEUROGLOSSUS STILBIUS				CITHARICHTHYS STIGMAEUS	H		
CITHARICHTHIS STIGHAEUS	1			ANTEDIUS HARRINGIUNI	Н		
RADULINUS ASPRELLUS	1			RADII INUS ASPRELLUS	П		
LEPTOCOTTUS ARMATUS				AGONIDAE	П		
ARTEDIUS HARRINGTON!				LEPTOCOTTUS ARMATUS	0		
ICOSTEUS AENIGMATICUS				ATHERESTHES STOMIAS			
LAMPANYCTUS SPP.				LAMPANYCTUS SPP.	4		
AGONIDAE				SYMBOLOPHORUS CALIFORNIENSE	-		
ATHERESTHES STOMLAS				ARGTROPELECUS LICHNUS	1		
SYMBOLOPHOPUS CALLEOPHIENSE	1			BATHYLACUS MULLERI	1		
MELAMPHAES SPP.				HACROPINNA MICROSTONA	1		
DANAPHOS OCULATUS				MYCTOPHIDAE	I.		
MACROFINNA MICROSTOMA				MACROURIDAE	1		
BATHYLAGUS MILLERI				OPHIODON ELONGATUS			
MYCTOPHIDAE				COTTUS ASPER			
MACKOURIDAE				ALLAMPHAES SPP.			
COTTUS ASPER				ARTCUIUS MEANTI	1		
FURYPHARTNY SPP.				FURTPHARYNY SPP.	1		
PLECTOBRANCHUS EVIDES				PLECTOBRANCHUS EVIDES			
OPHIDIIDAE				OPHIDIIDAE	1		
STICHAEIDAE				CITHARICHTHYS SORDIDUS	1		
COTTIDAE				SEBASTES PAUCISPINUS	1		
CITHARICHTHYS SORDIDUS				STICHAEIDAE	1		
SEBASTES PAUCISPINUS	1			COTTIDAE	0.		

Figure 6a.--Rank abundance of fish larvae caught in bongo tows during cruise 1P084, March-April 1984.

	CRUISE: IPO84 GEAR:	BONGO STAGE LARVAE	
CRECIES	MEAN NUMBER PER 10M2	109-99 SPECIES	LOG OF NUMBER IN SURVEY AREA
SPECIES			Contraction of the second s
STENDBRACHIUS LEUCOPSARUS		STENOBRACHIUS LEUCOPSARUS	
BATHYLAGUS OCHOTENSIS		BATHYLAGUS OCHOTENSIS	
ARTEDIUS MEANYI		SEBASTES SPP.	
LEUROGLOSSUS STILBIUS		TARLETONBEANIA CRENULARIS	
MERLUCCIUS PRODUCTUS		NANSENIA CANDIDA	
SEBASTES SPP.		PROTOMYCTOPHUM CROCKERI	
PAROPHRYS VETULUS		BATHYLAGUS PACIFICUS	
TARLETONBEANIA CRENULARIS	ł	LAMPANYCTUS RITTERI	the second se
UNIDENTIFIED		SEBASTOLOBUS SPP.	
MICROGADUS PROXIMUS		UNIDENTIFIED	
DIAPHUS INEIA			
OTCINTECRATED		DIAPHIG THETA	
OSMERIDAE		DISINTEGRATED	
MELAMPHAES SPP.		MELAMPHAEIDAE	
PLATICHTHYS STELLATUS		PAROPHRYS VETULUS	
NANSENIA CANDIDA		LESTIDIOPS RINGENS	
SEBASTOLOBUS SPP.		PROTOMYCIOPHUM THOMPSONI	
LAMPANYCTUS RITTERI		CHAULIODUS MACOUNI	d
PROTOMYCTOPHUM CROCKERI		ICICHTHYS LOCKINGTONI	
ICICHTHYS LOCKINGTONI		OSMERIDAE	
AMMODYTES HEXAPTERUS		ANUPLOPOMA FIMBRIA	
MELAMPHAEIDAE		TRACHIPTERUS ALTIVELIS	
ICORCETTA ICOLORIO		MICROCADUS PROVINUS	
CYCLOTHONE SPP.		CYCLOPTERIDAE	
PSETTICHTHYS MELANOSTICTUS		COSTEUS AENICHATICUS	
CITHARICHTHYS STIGMAEUS		CYCLOTHONE SPP.	
ANOPLOPOMA FIMBRIA		LYOPSETTA EXILIS	
LEPTOCOTTUS ARMAIUS		LEUROGLOSSUS STILBIUS	
RONQUILUS JORDANI		LAMPANYCTUS SPP.	
GLYPTOCEPHALUS ZACHIRUS		PSETTICHTHYS MELANOSTICTUS	
CHANGE AND	1	STRUCTHURUS CALIFORNIENSE	
PROTOMYCTORHUM THOMPSONT	H	HEMILEPIDATUS CACHINOS	
SYMBOLOPHORUS CALLEOPHIENSE		BATHYLACUS MILLERI	
SEBASTES PAUCISPINUS		CITHARICHTHYS STIGMAFUS	
OPHIDIIDAE		ARGYROPELECUS LYCHNUS	
AGONIDAE		ISOPSETTA ISOLEPIS	
CYCLOPTERIDAE		PLATICHTHYS STELLATUS	
TRACHIPTERUS ALTIVELIS		CITHARICHTHYS SORDIDUS	
MACROURIDAE		HYCTOPHIDAE	
BATHYLAGUS MILLERI	H	EURYPHARYNX SPP.	
CTIMARICHIMIS SURDIDUS		ARTEDIUS MEANYI	
HYCTOPHIDAE		MELAMPHAES SPP	
LAMPANYCTUS SPP.		DANAPHOS OCULATUS	T T
EURYPHARYNX SPP.		ATHERESTHES STOMIAS	
COTTIDAE		RONQUILUS JORDANI	
ARGYROPELECUS LYCHNUS		AGONIDAE	
HEMILEPIDOTUS SPINOSUS		RADULINUS ASPRELLUS	
ATHERESTHES STOMIAS		SEBASTES PAUCISPINUS	
OPHIODON ELONGATUS		ARTEDIUS HARRINGIONI	
STICHAETDAE		MACRORINNA MICROSTOMA	
PLECTOBRANCHUS EVIDES		LEPTOCOTTUS ARMATUS	
MACROPINNA HICROSTOMA		OPHIODON FLONGATUS	
RADULINUS ASPRELLUS		COTTUS ASPER	
COTTUS ASPER		PLECTOBRANCHUS EVIDES	
LYOPSETTA EXILIS		COTTIDAE	
ARTEDIUS HARRINGTONI		STICHAEIDAE	

		CRUISE	E 1P084	GE AR .	BONGO STAGE JUVENILE			
SPECIES	NUMBER CAU	GHT 20.00	30.00 40.00	50.00	SPECIES	PERCENT OCCURRENCE	5.00 20.00	25.00
STENOBRACHIUS LEUCOPSARUS BATHYLACUS OCHOTENSIS PROTOHYTCTOPHUM CROCKERI TACISTOMA MACROPUS NAMSENIA CANDIDA ALLOSHERUS ELONGATUS LYOPSETTA EXILIS DIAPHUS THETA					STENOBRACHIUS LEUCOPSARUS BATHYLAGUS OCHOTENSIS PROTOHYCTOPHUM CROCKERI TARLETONBEANIA CRENULARIS TACTOSTOHA HACROPUS NANSENIA CANDIDA ALLOSHERUS ELONGATUS LYOPSETIA EXILIS DIAPHUS THETA			
SPECIES	MEAN NUMBE	PER 10M	2 6.00 0 .00	10.00	SPECIES	LOG OF NUMBER IN SUR	VEY AREA	15.00
STENOBRACHTUS LEUCOPSARUS DIAPHUS THETA NANSENIA CANOIDA PROIOHYCTOPHUM CROCKERI BATHYLACUS OCHOTENSIS TARLETONBEANIA CREMULARIS LTOPSETTA EXILIS TACTOSTOTA MACROPUS ALLOSMERUS FLONGATUS					STENOBRACHTUS LEUGOPSARUS BATHYLAGUS OCHOTENSIS PROTORYGTOPHUM CROCKERI TARLETONBEANIA CRENULARIS TACTOSTOMA MACROPUS NANSENIA CANDIDA DIAPHUS THETA LYOPSETTA EXILIS ALLOSMERUS ELONGATUS			

Figure 7.--Rank abundance of fish juveniles caught in bongo tows during cruise 1P084, March-April 1984.

Figure 8.--Distribution and lengths of <u>Nansenia candida</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 9.--Distribution of Bathylagidae eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 10.--Distribution of <u>Bathylagus</u> spp. eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 11.--Distribution and lengths of <u>Bathylagus ochotensis</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 12.--Distribution of <u>Bathylagus</u> ochotensis juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 13.--Distribution of Myctophidae eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 14.--Distribution and lengths of <u>Stenobrachius leucopsarus</u> larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 15.--Distribution and lengths of <u>Stenobrachius leucopsarus</u> juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 16.--Distribution and lengths of <u>Tarletonbeania</u> crenularis larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 17.--Distribution and lengths of <u>Tarletonbeania</u> crenularis juveniles from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 18.--Distribution and lengths of <u>Cololabis</u> <u>saira</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000m³.

Figure 19.--Distribution and lengths of <u>Sebastes</u> spp. larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 20.--Distribution and lengths of <u>Sebastes</u> spp. larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

Figure 21.--Distribution and lengths of <u>Anoplopoma fimbria</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

Figure 22.--Distribution and lengths of <u>Anoplopoma fimbria</u> larvae from deep bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².

Figure 23.--Distribution and lengths of <u>Hexagrammos</u> <u>decagrammus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000m³.

Figure 24.--Distribution and lengths of <u>Hemilepidotus spinosus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000³.

Figure 25.--Distribution of <u>Icosteus aenigmaticus</u> eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000m³.

Figure 26.--Distribution and lengths of <u>Ammodytes hexapterus</u> larvae from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

Figure 27.--Distribution of Pleuronectidae eggs from bongo tows during cruise 19084, March-April 1984. Abundance expressed as number per 10 m².

Figure 28.--Distribution of Pleuronectidae eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000m³.

Figure 29.--Distribution of <u>Glyptocephalus</u> zachirus eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

Figure 30.--Distribution of Lyopsetta exilis eggs from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10m².

Figure 31.--Distribution of <u>Microstomus pacificus</u> eggs from neuston tows during cruise 1P084, March-April 1984. Abundance expressed as number per 1,000 m³.

Figure 32.--Distribution and lengths of <u>Parophrys</u> vetulus larvae from bongo tows during cruise 1P084, March-April 1984. Abundance expressed as number per 10 m².